반응형
주제(Subject)
--------------------------------------------------------
한글(약어) : 계수 정렬()
영어(약어) : counting sort()
관련개념(Related Concepts)
--------------------------------------------------------
정렬
알고리즘
분포기반 정렬
개요(Summary)
--------------------------------------------------------
키가 나타난 횟수를 사용해서 정렬하는 방법. 자료가 일정 범위 안에 있다는 것을 알고 있을 때에만 사용가능함.
본문(Body)
--------------------------------------------------------
1. 계수 정렬의 성질
2. 소스코드(pseudo code)
3. 시뮬레이션
1) Counting Sort - Java Applet
http://users.cs.cf.ac.uk/C.L.Mumford/tristan/CountingSort.html
2) JavaScript
http://tide4javascript.com/?s=Counting
모임,단체(Commutities)
--------------------------------------------------------
블로그,개인 홈페이지 등(Humanities)
--------------------------------------------------------
1. Christine Mumford(Computer Science, Cardiff University)
http://users.cs.cf.ac.uk/C.L.Mumford/
2. Rashid Bin Muhammad(Department of Computer Science, Kent State University)
http://www.cs.kent.edu/~rmuhamma
참고문서(References)
--------------------------------------------------------
* 한국어(Korean)
저자. 역자. "제목". 출판사. 출판년도. (ISBN:)
* 영어(English)
저자. 제목, 판, 출판사. 출판년도. (ISBN:)
1. Wikipedia : Counting Sort
http://en.wikipedia.org/wiki/Counting_sort
2. Google Search : type [[counting sort site:*.edu]]@google
http://www.google.com/search?source=ig&hl=en&q=counting+sort+site%3A*.edu
3. Counting Sort
http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/Sorting/countingSort.htm
--------------------------------------------------------
한글(약어) : 계수 정렬()
영어(약어) : counting sort()
관련개념(Related Concepts)
--------------------------------------------------------
정렬
알고리즘
분포기반 정렬
개요(Summary)
--------------------------------------------------------
키가 나타난 횟수를 사용해서 정렬하는 방법. 자료가 일정 범위 안에 있다는 것을 알고 있을 때에만 사용가능함.
본문(Body)
--------------------------------------------------------
1. 계수 정렬의 성질
Counting sort is stable (see sorting algorithm) and has a running time of Θ(n+k), where n and k are the lengths of the arrays A (the input array) and C (the counting array), respectively. In order for this algorithm to be efficient, k must not be too large compared to n. As long as k is O(n) the running time of the algorithm is Θ(n).
- Wikipedia : Counting Sort
- Wikipedia : Counting Sort
2. 소스코드(pseudo code)
for i ← 1 to k do
c[i] ← 0
for j ← 1 to n do
c[A[j]] ← c[A[j]] + 1
//c[i] now contains the number of elements equal to i
for i ← 2 to k do
c[i] ← c[i] + c[i-1]
// c[i] now contains the number of elements ≤ i
for j ← n downto 1 do
B[c[A[i]]] ← A[j]
c[A[i]] ← c[A[j]] - 1
from Rashid Bin Muhammad's Home
c[i] ← 0
for j ← 1 to n do
c[A[j]] ← c[A[j]] + 1
//c[i] now contains the number of elements equal to i
for i ← 2 to k do
c[i] ← c[i] + c[i-1]
// c[i] now contains the number of elements ≤ i
for j ← n downto 1 do
B[c[A[i]]] ← A[j]
c[A[i]] ← c[A[j]] - 1
from Rashid Bin Muhammad's Home
3. 시뮬레이션
1) Counting Sort - Java Applet
http://users.cs.cf.ac.uk/C.L.Mumford/tristan/CountingSort.html
2) JavaScript
http://tide4javascript.com/?s=Counting
모임,단체(Commutities)
--------------------------------------------------------
블로그,개인 홈페이지 등(Humanities)
--------------------------------------------------------
1. Christine Mumford(Computer Science, Cardiff University)
http://users.cs.cf.ac.uk/C.L.Mumford/
2. Rashid Bin Muhammad(Department of Computer Science, Kent State University)
http://www.cs.kent.edu/~rmuhamma
참고문서(References)
--------------------------------------------------------
* 한국어(Korean)
저자. 역자. "제목". 출판사. 출판년도. (ISBN:)
* 영어(English)
저자. 제목, 판, 출판사. 출판년도. (ISBN:)
1. Wikipedia : Counting Sort
http://en.wikipedia.org/wiki/Counting_sort
2. Google Search : type [[counting sort site:*.edu]]@google
http://www.google.com/search?source=ig&hl=en&q=counting+sort+site%3A*.edu
3. Counting Sort
http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/Sorting/countingSort.htm
반응형
'B1:기초 Basement' 카테고리의 다른 글
2-3-4 나무 ( 2-3-4 tree ) (0) | 2007.05.13 |
---|---|
합병 정렬 ( merge sort ) (1) | 2007.05.13 |
흑적나무 ( red-black tree ) (0) | 2007.05.13 |
ASF, WMA, WMV 동영상 합치기와 기타 변환작업 :: asf tools (0) | 2007.05.10 |
KMP 알고리즘 (Knuth–Morris–Pratt string searching algorithm) (0) | 2007.05.06 |