주제(Subject)
--------------------------------------------------------
한글(약어) : 2-3-4 나무()
영어(약어) : 2-3-4 tree()
관련개념(Related Concepts)
--------------------------------------------------------
탐색
균형나무
알고리즘
개요(Summary)
--------------------------------------------------------
각 노드가 2노드, 3노드, 4노드로 이루어진 나무
균형나무
본문(Body)
--------------------------------------------------------
1. 개념
2-3-4 trees are relatively difficult to implement in most programming languages because of the large number of special cases involved in operations on the tree. Red-black trees (see below) are simpler to implement, so they tend to be used instead.
- Wikipedia : 2-3-4 Tree
2. 시뮬레이션
1) Animation of B-Tree : JavaApplet
http://www.cse.ohio-state.edu/~bondhugu/acads/234-tree/index.shtml
2) A Graphical 2-3-4 Tree Implementation : JavaApplet
http://www.cs.unm.edu/~rlpm/499/ttft.html
모임,단체(Commutities)
--------------------------------------------------------
블로그,개인 홈페이지 등(Humanities)
--------------------------------------------------------
1. Rory L. P. McGuire (University of New Mexico Department of Computer Science)
http://www.cs.unm.edu/~rlpm/
2. Uday Kumar Reddy Bondhugula (Ph.D. student (3rd year), Graduate Research Associate, Department of Computer Science & Engineering, The Ohio State University)
http://www.cse.ohio-state.edu/~bondhugu/
참고문서(References)
--------------------------------------------------------
* 한국어(Korean)
저자. 역자. "제목". 출판사. 출판년도. (ISBN:)
* 영어(English)
저자. 제목, 판, 출판사. 출판년도. (ISBN:)
1. Wikipedia : 2-3-4 Tree
http://en.wikipedia.org/wiki/2-3-4_tree
2. Google Search : type [[2-3-4 tree site:*.edu]]@google
http://www.google.com/search?hl=en&q=2-3-4+tree+site%3A*.edu
'B1:기초 Basement' 카테고리의 다른 글
소프트웨어 개발/유지 비용곡선 ( Software maintenance life cycle) (0) | 2007.05.24 |
---|---|
Böhm-Jacopini정리 ( Böhm-Jacopini theorem ) (0) | 2007.05.24 |
합병 정렬 ( merge sort ) (1) | 2007.05.13 |
계수 정렬 ( counting sort ) (0) | 2007.05.13 |
흑적나무 ( red-black tree ) (0) | 2007.05.13 |